Published On: 21/01/2002|Categories: 1998–2002, Vol.23 (1), Vol.23 (2002)|

Author

DOI:

Rate this article

0

Abstract

A growing body of evidence suggests that the spatial and the temporal domains seem to share the same or similar conditions, basic effects, and mechanisms. The blocking, unblocking and overshadowing experiments (and also those of latent inhibition and perceptual learning reviewed by Prados and Redhead in this issue) show that to exclude associative learning as a basic mechanism responsible for spatial learning is quite inappropriate. All these results, especially those obtained with strictly spatial tasks, seem inconsistent with O’Keefe and Nadel’s account of true spatial learning or locale learning. Their theory claims that this kind of learning is fundamentally different and develops with total independence from other ways of learning (like classical and instrumental conditioning -taxon learning). In fact, the results reviewed can be explained appealing on to a sophisticated guidance system, like for example the one proposed by Leonard and McNaughton (1990; see also McNaughton and cols, 1996). Such a system would allow that an animal generates new space information: given the distance and address from of A to B and from A to C, being able to infer the distance and the address from B to C, even when C is invisible from B (see Chapuis and Varlet, 1987 -the contribution by McLaren in this issue constitutes a good example of a sophisticated guidance system).

Open Access